The use of dental radiographs
Update and recommendations

American Dental Association Council on Scientific Affairs

Dental radiographs are a useful and necessary tool in the diagnosis and treatment of oral diseases such as caries, periodontal diseases and oral pathologies. Although radiation doses in dental radiography are low, exposure to radiation should be minimized where practicable. Dentists should weigh the benefits of dental radiographs against the consequences of increasing a patient’s exposure to radiation, the effects of which accumulate from multiple sources over time. The “as low as reasonably achievable” (ALARA) principle should be followed to minimize exposure to radiation.

This report discusses implementation of proper radiographic practices. It addresses topics such as patient selection criteria, film selection for conventional radiographs, collimation, beam filtration, patient protective equipment, film holders, operator protection, film exposure and processing, infection control, quality assurance, image viewing, direct digital radiography and continuing education of dental health care workers who expose radiographs.

Conclusions. This report discusses implementation of proper radiographic practices. In addition to these guidelines, dentists should be aware of, and comply with, applicable federal and state regulations.

Clinical Implications. Dentists should weigh the benefits of dental radiographs against the consequences of increasing a patient’s exposure to radiation and implement appropriate radiation control procedures.

Key Words. Radiographs; X-ray; radiographic examination; radiation exposure; digital radiography; quality assurance.

JADA 2006;137:1304-12.

Address reprint requests to American Dental Association Council on Scientific Affairs, 211 E. Chicago Ave., Chicago, Ill. 60611.

In addition to these guidelines, dentists should be aware of, and comply with, applicable federal and state regulations. (The Web site of the Conference of Radiation Control Program Directors at “www.crcpd.org/Map/map.asp” provides contact information for state radiation control and protection programs.)

PATIENT SELECTION CRITERIA

There is little evidence to support radiographic exposure of all dentulous areas of the oral cavity in search of occult pathoses in the asymptomatic patient.3,6-8 Studies have shown that basing selection criteria on clinical evaluations for asymptomatic patients, combined with selected periapical radiographs for symptomatic patients, can result in a 43 percent reduction in the number of radiographs without a clinically consequential increase in the rate of undiagnosed disease.9,10

In collaboration with the ADA, the FDA has updated its guidelines for the selection of patients for dental radiographic examination (Table 1).5 These guidelines provide recommendations for radiographs with consideration given to a patient’s caries risk, periodontal status, stage of growth and development, and other specific circumstances. The guidelines recommend that radiographs be limited to the areas required for adequate diagnosis and treatment on the basis of the sound exercise of professional judgment.3,5-8,11 Dentists should not prescribe routine dental radiographs at preset intervals for all patients.3 Instead, they should prescribe radiographs after an evaluation of the patient’s needs that includes a health history review, a clinical dental history assessment, a clinical examination and an evaluation of susceptibility to dental diseases.3 For new or referred patients, clinicians should obtain recent dental radiographs from the patient’s previous dental health care provider.3 They also should review early radiographs, if available, for comparative purposes.

Dental radiographs may be prescribed for pregnant patients with careful adherence to the FDA selection criteria guidelines.3,5 Dental disease left untreated during pregnancy can lead to problems for both the mother and the fetus, and dental radiographs may be required for proper diagnosis and management.12

No special considerations apply to dental radiographs for patients undergoing radiation therapy to the head and neck. These patients are at a high risk of developing dental diseases, and the radiation exposure from dental radiographs is negligible when compared with the therapeutic exposure they already are receiving in their treatment.13,14

Panoramic radiographs may reveal calcifications of the carotid artery through examination of the region 1.5 to 2.5 centimeters posterior and inferior to the angle of the mandible.15-19 It is not recommended that the clinician take dental panoramic radiographs specifically to evaluate for carotid artery calcification, but rather that he or she evaluate radiographs taken for dental purposes for this condition as well. If the dentist suspects this condition, he or she should refer the patient to a physician for evaluation.

FILM SELECTION FOR CONVENTIONAL RADIOGRAPHS

The American National Standards Institute and the International Organization for Standardization have established standards for film speed.20,21 Film speeds available for dental radiography are D-speed, E-speed and F-speed, with D-speed being the slowest and F-speed the fastest. The use of faster film speed can result in up to a 50 percent decrease in exposure to the patient without compromising diagnostic quality.3,22 Film of a speed slower than E-speed should not be used for dental radiographs.3,22,23

Exposure of extraoral films such as panoramic radiographs requires intensifying screens to minimize radiation exposure to patients. The intensifying screen consists of layers of phosphor crystals that fluoresce when exposed to radiation. In addition to the radiation incident on the film, the film is exposed primarily to the light emitted from the intensifying screen. Previous generations of
TABLE 1

U.S. Food and Drug Administration guidelines for prescribing dental radiographs.*

The recommendations in this table are subject to clinical judgment and may not apply to every patient. They are to be used by dentists only after reviewing the patient’s health history and completing a clinical examination. Because every precaution should be taken to minimize radiation exposure, protective thyroid collars and aprons should be used whenever possible. This practice is strongly recommended for children, women of childbearing age and pregnant women.

<table>
<thead>
<tr>
<th>TYPE OF ENCOUNTER</th>
<th>PATIENT AGE AND DENTAL DEVELOPMENT STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Child With Primary Dentition (Prior to Eruption of First Permanent Tooth)</td>
</tr>
<tr>
<td>New Patient† Being Evaluated for Dental Diseases and Dental Development</td>
<td>Individualized radiographic examination consisting of posterior and/or periapical views if proximal surfaces cannot be visualized or probed.</td>
</tr>
<tr>
<td>Recall Patient* With Clinical Caries or at Increased Risk of Developing Caries‡</td>
<td>Posterior bitewing examination at six- to 12-month intervals if proximal surfaces cannot be examined visually or with a probe.</td>
</tr>
<tr>
<td>Recall Patient* With No Clinical Caries and Not at Increased Risk of Developing Caries‡</td>
<td>Posterior bitewing examination at 12- to 24-month intervals if proximal surfaces cannot be examined visually or with a probe.</td>
</tr>
<tr>
<td>Recall Patient* With Periodontal Disease</td>
<td>Clinical judgment as to need for type of radiographic images for the evaluation of periodontal disease; imaging may consist of, but is not limited to, selected bitewings and periapical images of areas in which periodontal disease (other than nonspecific gingivitis) can be demonstrated clinically.</td>
</tr>
<tr>
<td>Patient for Monitoring of Growth and Development</td>
<td>Clinical judgment as to need for and type of radiographic images for evaluation and/or monitoring of dentofacial growth and development.</td>
</tr>
<tr>
<td>Patient With Other Circumstances Including, but not Limited to, Proposed or Existing Implants, Pathology, Restorative/Endodontic Needs, Treated Periodontal Disease and Caries Remineralization</td>
<td>Clinical judgment as to need for and type of radiographic images for evaluation and/or monitoring of these conditions.</td>
</tr>
</tbody>
</table>

* Reprinted from U.S. Department of Health and Human Services, Public Health Service, Food and Drug Administration; and American Dental Association, Council on Dental Benefit Programs, Council on Scientific Affairs.5
† Clinical situations for which radiographs may be indicated include, but are not limited to, the following: Positive historical findings: Previous periodontal or endodontic treatment, history of pain or trauma, familial history of dental anomalies, postoperative evaluation of healing, remineralization monitoring, presence of implants or evaluation for implant placement. Positive clinical signs/symptoms: clinical evidence of periodontal disease, large or deep restorations, deep proximal contacts may not be visualized or probed, patients without evidence of disease and with open proximal contacts may not require a radiographic examination at this time.
‡ Factors increasing risk for caries may include, but are not limited to, the following: high level of caries experience or remineralization, history of recurrent caries, high titer of cariogenic bacteria, existing restoration of poor quality, poor oral hygiene, inadequate fluoride exposure, prolonged nursing (bottle or breast), diet with high sucrose frequency, poor family dental health, developmental or acquired enamel defects, developmental or acquired disability, xerostomia, genetic abnormality of teeth, many multisurface restorations, chemotherapy/radiation therapy, eating disorders, drug/alcohol abuse, irregular dental care.
intensifying screens were composed of phosphors such as calcium tungstate. However, rare-earth intensifying screens are recommended because they reduce a patient’s radiation exposure by 50 percent compared with calcium tungstate–intensifying screens. Rare-earth film systems, combined with a high-speed film of 400 or greater, can be used for conventional panoramic radiographs. Older panoramic equipment can be retrofitted to reduce the radiation exposure to accommodate the use of rare-earth high-speed systems.

COLLIMATION

Collimation limits the amount of radiation, both primary and scattered, to which the patient is exposed. The X-ray beam should not exceed the minimum coverage necessary, and each dimension of the beam should be collimated so that the beam does not exceed the receptor by more than 2 percent of the source-to-image receptor distance. Since a rectangular collimator decreases the radiation dose by up to fivefold as compared with a circular one, radiographic equipment should provide rectangular collimation for exposure of periapical and bitewing radiographs. The position-indicating device (PID) should be opened and have a metallic lining to restrict the primary beam and reduce the tissue volume exposed to radiation. Use of long source-to-skın distances of 40 cm, rather than short distances of 20 cm, decreases exposure by 10 to 25 percent. Distances between 20 cm and 40 cm are appropriate, but the longer distances are optimal.

BEAM FILTRATION

The operating potential of dental X-ray machines affects the radiation dose and backscatter radiation. Lower voltages produce higher-contrast images and higher entrance skin doses and lower deep-tissue doses and levels of backscatter radiation. However, higher voltages produce lower-contrast images that enable better separation of objects with differing densities. Thus, the diagnostic purposes of the radiograph should be used to determine the selection of kilovoltage. The operating potential of dental X-ray machines must range between 50 and 100 kilovolt peak but should range between 60 and 80 kVp. Manufacturers of low-kVp (less than 60) dental radiographic equipment are required to install internal aluminum beam filters so that the mean beam energy will approach 60 kVp.

PATIENT PROTECTIVE EQUIPMENT

Leaded aprons and thyroid shields that contain lead or other materials are patient-protective equipment that minimize exposure to scattered radiation. If all of the NCRP recommendations are followed rigorously, the use of a leaded apron on patients is not required. However, if any of the recommendations is not implemented, then a leaded apron should be used.

Thyroid shielding with a leaded thyroid shield or collar is strongly recommended for children and pregnant women, as these patients may be especially susceptible to radiation effects. Thyroid shielding also is recommended for adults when it will not interfere with the exposure. To prevent cracks from occurring in the leaded shield, practitioners should ensure that leaded aprons and collars are hung and not folded.

FILM HOLDERS

Film holders that align the film precisely with the collimated beam are recommended for periapical and bitewing radiographs. Heat-sterilizable or disposable intraoral radiograph film-holding devices are recommended for optimal infection control. Dental professionals should not hold the film holder during exposure. Under extraordinary circumstances in which members of the patient’s family (or other caregiver) must provide restraint or hold a film holder in place during exposure, such a person should have appropriate shielding.

OPERATOR PROTECTION

Although dental professionals receive less exposure to X-radiation than do other health care workers, operator protection measures are essential to minimize occupational exposure to ionizing radiation. Operator protection measures include education, the implementation of a radiation protection program, annual and lifetime limits of exposure to ionizing radiation, recommendations for personal dosimeters and the use of barrier shielding.

The maximum permissible annual dose of ionizing radiation for health care workers is 50 millisieverts and the maximum permissible lifetime dose is 10 mSv multiplied by a person’s age in years. Personal dosimeters should be used by workers who may receive an annual dose greater than 1 mSv to monitor their exposure levels. Dental personnel who expose radiographs and are

pregnant also should use personal dosimeters, regardless of anticipated exposure levels.Operators of radiographic equipment should use barrier protection when possible, and barriers should contain a leaded glass window to enable the operator to view the patient during exposure. When shielding is not possible, the operator should stand at least two meters from the tube head and out of the path of the primary beam. The NCRP report “Radiation Protection in Dentistry” offers detailed information on shielding and office design (in its Appendix F).

FILM EXPOSURE AND PROCESSING

Exposure settings and film processing procedures can affect the quality of the radiographic image. The operator should set the amperage and time settings for exposure of dental radiographs of optimal quality. Radiographs should not be overexposed and then underdeveloped, because this practice results in greater exposure to the patient and dental health care worker and can produce images of poor diagnostic quality. Dental radiographs should not be processed by sight, and manufacturers’ instructions regarding time, temperature and chemistry should be followed.

Darkrooms should have adequate ventilation, and dental personnel should use protective procedures to avoid contact with the development chemicals. A darkroom is preferable to daylight-loading processors, as the latter makes infection control procedures difficult to follow. The length of time for which a film can be exposed to the safelight should be determined for the specific safelight/film combination used.

State regulations may provide instructions regarding disposal of film-processing solutions and lead foil from the film packet. Fixer solutions may be considered hazardous waste because of their silver content and should be placed in containers and transported for recycling or to disposal sites. The EPA recommends that lead foil be disposed of in accordance with local regulations.

INFECTION CONTROL

Each dental health care facility should use standard precautions when exposing dental radiographs. The personnel exposing the films should set out all necessary supplies and adjust the patient chair and head position before beginning the procedure. They should wear gloves when exposing the film and handling contaminated items, and they should always wash their hands before and after wearing gloves. They should wear additional personal protective equipment, such as eyewear and a mask or face shield, when exposure to body fluids is anticipated.

Heat-sterilizable or disposable intraoral radiograph film-holding devices are recommended, and barrier-protected film should be used whenever possible to prevent contamination and to minimize infection control procedures. Digital intraoral film receptors that cannot be heat-sterilized should be covered with FDA-cleared protective barriers. Because contamination of daylight-loading film processors is difficult to avoid, barrier-protected film also is recommended for use with these.

The film packet should be dried after a film is exposed. If a protective film barrier is used, it should be removed carefully to avoid contamination of the film packet. The uncontaminated contents then can be handled without gloves or other precautions. If the barrier is not used, gloves should be worn when the contaminated film packet is opened and the film allowed to fall out of the packet. After all of the films have been removed in this manner, the gloves are removed and hands washed. Once his or her hands are clean, the operator now can place the films in the processor as well as mount the processed radiographs.

All extraoral devices that will be contacted during the procedure should be either disinfected between patients or protected by a barrier and changed between patients. An EPA-registered hospital-level disinfectant with low-to-intermediate activity should be used to treat any surfaces that become contaminated.

QUALITY ASSURANCE

Quality assurance protocols for the X-ray machine, imaging receptor, film processing, dark room, and leaded aprons and thyroid collars should be developed and implemented for each dental health care setting. All quality assurance procedures, including date, procedure, results and corrective action, should be logged for documentation purposes.

A qualified expert should survey all X-ray machines on their placement and should resurvey the equipment every four years or if there are any changes made to it during this interval. Surveys typically are performed by state agencies, and individual state regulations should be consulted.
regarding specific survey intervals. The film processor should be evaluated at its initial installation and on a monthly basis afterward. The processing chemistry should be evaluated daily, and each type of film should be evaluated monthly or when a new box or batch of film is opened.\(^3\) Leaded aprons and thyroid collars should be inspected visually for damage on a monthly basis and examined fluoroscopically on an annual basis.\(^3\) Leaded aprons and collars in poor condition should be disposed of using a recycler licensed to handle lead waste.\(^39\) Table 2 lists specific methods of quality assurance procedures, covering not only inspection of the X-ray machine itself but also of the film processor, the image receptor devices, the darkroom and leaded aprons and collars\(^40,41\) (Figure, page 1311).

IMAGE VIEWING

The dentist should view radiographs under appropriate conditions for analysis and diagnosis. An illuminated viewer, preferably with variable intensity to allow for optimization of high- and low-density areas, should be used. Minimum room light will reduce reflections, and an opaque film holder will help to prevent glare and loss of visual acuity.\(^42\) Magnification should be used as needed.

DIGITAL RADIOGRAPHY

A high-quality image can be obtained through the use of direct digital radiography while minimizing exposure to both patient and health care provider. Advantages of digital radiography include a decrease in radiation exposure for intraoral radiographs, speed in obtaining the image, ease of digital storage and electronic transmission of the image, and discontinued need for darkroom equipment.\(^3,42-45\) A digital radiographic image can be adjusted for optimal diagnostic quality, including alterations in contrast, density, magnification and color.\(^3,44,45\) Radiographic images can be printed on photo-quality paper or transparent sheets using any of a number of standard printers.

Widely available forms of direct digital radiography include photostimulable storage phosphor (PSP) sensors (also known simply as “storage phosphor sensors”), solid-state electronic sensors such as charged-coupled devices (CCD) and complementary metal-oxide semiconductor active pixel sensors (CMOS-APS). The image receptor used by the PSP format is similar in size, shape and flexibility to that of a conventional radiographic film. On exposure, the image is converted into stored energy on the image receptor.\(^3\) The exposed image receptors are placed in a processor and scanned by a laser.\(^3\) The image is converted into a digital format in one to two minutes. The image receptor can be reused after proper infection control procedures are carried out, and after erasure of the residual image by exposure to a strong light source for one minute. Because of the time required to obtain an image in this processing format, a PSP system is suited for instances in which an immediately available image is not essential.

The CCD and CMOS-APS formats use a reusable intraoral image receptor that is sensitive to X-rays and visible light and is connected by a cable directly to a computer. The receptor is the size of intraoral films, but the image’s active area may be smaller than this size. Upon exposure, the image is immediately converted to a digital format. The speed of obtaining an image makes these systems desirable when instant images are essential (such as oral surgery procedures, endodontics and implant placement).

Although technological advances in direct digital radiography have made the diagnostic quality of digital images comparable to that of conventional films,\(^3,47-49\) there are some concerns about direct digital radiographs. These include the small receptor area that may require multiple exposures per area, the thickness and rigidity of some receptors that may make positioning difficult, and decreased resolution. FDA-cleared protective barriers are necessary for adequate infection control due to the lack of heat-tolerant intraoral equipment.\(^3\) Finally, proprietary formats for image-viewing may limit electronic transfer and accessibility of the digital image.

The Digital Imaging and Communications in Medicine (DICOM) standard, developed by the American College of Radiology and the National Electrical Manufacturers Association, aims to facilitate a common method of transmission for medical radiographic images.\(^50\) The ADA supports the use of DICOM. To further adapt the DICOM standards for the exchange of digital radiographic images used in dentistry, the ADA Standards Committee on Dental Informatics (SCDI) developed a report, Technical Report (TR) No 1023: Implementation Requirements for DICOM in Dentistry.\(^51\) The DICOM requirements presented in the Technical Report enable exchange of digital
TABLE 2

Quality assurance procedures for assessment of radiographic equipment.

The following procedures for periodic assessment of the performance of radiographic equipment, film processing equipment, image receptor devices, dark room integrity, and leaded apron and thyroid collar are adapted from the National Council for Radiation Protection & Measurements report, “Radiation Protection in Dentistry.” Please refer to state guidelines for specific regulations.

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>FREQUENCY</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray Machine</td>
<td>On installation</td>
<td>Inspection by qualified expert (as specified by state regulations)</td>
</tr>
<tr>
<td></td>
<td>At regular intervals as recommended by state regulations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whenever there are any changes in installation, workload or operating conditions</td>
<td></td>
</tr>
<tr>
<td>Film Processor</td>
<td>On installation</td>
<td>Method 1: Sensitometry and Densitometry*</td>
</tr>
<tr>
<td></td>
<td>Daily</td>
<td>A sensitometer is used to expose a film, followed by standard processing of the film</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The processed film will have a defined pattern of optical densities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The densities are measured with a densitometer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The densitometer measurements are compared to the densities of films exposed and processed under ideal conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A change in densitometer values indicates a problem with either the development time, temperature or the developer solutions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advantages</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disadvantage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expense of additional equipment</td>
</tr>
<tr>
<td></td>
<td>Method 2: Stepwedge (See Figure)</td>
<td>A stepwedge (as described above)</td>
</tr>
<tr>
<td></td>
<td>An aluminum stepwedge may be purchased or fabricated to resemble stairs, with each step of the aluminum stepwedge at 1 millimeter thick and 3 to 4 mm wide, with at least six steps</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A film is exposed through the stepwedge with the same machine settings, film placement and stepwedge placement used for each daily exposure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The processed film is compared visually with a reference film</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A change in density of one or more steps indicates a problem with either the development time, temperature or the developer solutions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advantage</td>
<td>Cost effectiveness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disadvantage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Less precision</td>
</tr>
<tr>
<td></td>
<td>Method 3: Reference Film*</td>
<td>A film exposed and processed under ideal conditions is attached to the corner of a view box as a reference film</td>
</tr>
<tr>
<td></td>
<td>Subsequent films are compared with the reference film</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advantage</td>
<td>Cost effectiveness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disadvantage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Least sensitivity</td>
</tr>
<tr>
<td>Image Receptor Devices</td>
<td>Monthly</td>
<td>Method 1: Sensitometry and Densitometry (as described above)</td>
</tr>
<tr>
<td>Film</td>
<td>With each new batch of film</td>
<td>Method 3: Reference Film (as described above)</td>
</tr>
<tr>
<td></td>
<td>Every six months</td>
<td>Visual inspection of cassette integrity</td>
</tr>
<tr>
<td>Intensifying Screen and Extraoral Cassettes</td>
<td></td>
<td>Examination of intensifying screen for scratches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Development of an unexposed film that has been in the cassette exposed to normal lighting for one hour or more</td>
</tr>
<tr>
<td>Darkroom Integrity</td>
<td>On installation</td>
<td>While in a darkroom with the safelight on, place a metal object (such as a coin) on unwrapped film for a period that is equivalent to the time required for a typical darkroom procedure</td>
</tr>
<tr>
<td></td>
<td>Monthly</td>
<td>Develop the film</td>
</tr>
<tr>
<td></td>
<td>After a change in the lighting filter or lamp</td>
<td>Detection of the object indicates a problem with the safelight or light leaks in the darkroom</td>
</tr>
<tr>
<td>Leaded Apron and Collar</td>
<td>Monthly (visual)</td>
<td>Visual: inspection of the apron and collar for obvious tears, rips, cuts, etc.</td>
</tr>
<tr>
<td></td>
<td>Annual (fluoroscopic)</td>
<td>Fluoroscopic: performed by a qualified professional†</td>
</tr>
</tbody>
</table>

* There are three options for evaluating a film processor.
† As indicated in Lambert and McKeon and Michel and Zorn.

Copyright ©2006 American Dental Association. All rights reserved.
radiographic images between dental providers regardless of operating systems. Dental digital imaging system vendors that follow the requirements should certify that they are in compliance with ADA SCDI TR 1023.

TRAINING AND EDUCATION

Where permitted by law, auxiliary dental personnel can perform intraoral and extraoral film exposure.3,52,53 Personnel certified to expose dental radiographs should receive appropriate education.3,52,53 They also should receive training in infection control procedures because radiographic operators are subjected to occupational exposure to bloodborne pathogens.3,4,38 Practitioners should remain informed about safety updates and the availability of new equipment, supplies and techniques that could further improve the diagnostic quality of radiographs and decrease radiation exposure. The ADA’s Web site provides access to a continuing education course list in topics of dental radiographs, radiation safety and infection control (“www.ada.org/prof/ed/ce/index.asp”).

This report makes recommendations to dentists on implementation of radiographic practices. It is not intended to establish a legal standard of care for the practice of dentistry. In reviewing these recommendations and in making treatment decisions, the dentist’s own professional judgment must remain paramount. In addition, the recommendations set forth here are general. Practitioners must consult their state laws for specific requirements. State law may address who may perform radiographic exposures, the level of supervision and training required, equipment inspection and maintenance, waste disposal, operator protections and other issues.

CONCLUSION

Dentists should consider developing and implementing a radiation protection program in their offices. In addition, practitioners should remain informed on safety updates and the availability of new equipment, supplies and techniques that could further improve the diagnostic ability of radiographs and decrease exposure.

